serving_ml_prediction.ipynb
serving_ml_prediction.ipynb#
Based on:
../production_ml/solutions/serving_ml_prediction.ipynb
import os
PROJECT_ID = os.environ.get("GOOGLE_CLOUD_PROJECT")
BUCKET = PROJECT_ID
REGION = 'us-central1'
print(PROJECT_ID)
cloudskillsboost-377709
Create bucket
from google.cloud import storage
storage_client = storage.Client()
bucket = storage_client.bucket(BUCKET)
if not bucket.exists():
storage_client.create_bucket(BUCKET, location=REGION)
Copy trained model in it
source_bucket_name = 'cloud-training-demos'
path = 'babyweight/trained_model/'
source_bucket = storage_client.bucket(source_bucket_name)
for blob in storage_client.list_blobs(source_bucket, prefix=path):
source_bucket.copy_blob(blob, bucket, blob.name.replace('/trained_model/', '/'))
Deploy trained model
from google.cloud import aiplatform
endpoint = aiplatform.Model.upload(
display_name='babyweight',
artifact_uri=f'gs://{BUCKET}/babyweight/export/exporter/1529355466/',
serving_container_image_uri='us-docker.pkg.dev/vertex-ai/prediction/tf2-cpu.2-6:latest'
).deploy()
# endpoint.undeploy_all()
# endpoint.delete()